Use of Convex Model Approximations for Real-Time Optimization via Modifier Adaptation
نویسندگان
چکیده
Real-Time Optimization (RTO) via modifier adaptation is a class of methods for which measurements are used to iteratively adapt the model via input-affine additive terms. The modifier terms correspond to the deviations between the measured and predicted constraints on the one hand, and the measured and predicted cost and constraint gradients on the other. If the iterative scheme converges, these modifier terms guarantee that the converged point satisfies the KKT conditions for the plant. Furthermore, if upon convergence the plant model predicts the correct curvature of the cost function, convergence to a (local) plant optimum is guaranteed. The main advantage of modifier adaptation lies in the fact that these properties do not rely on specific assumptions regarding the nature of the uncertainty. In other words, in addition to rejecting the effect of parametric uncertainty like most RTO methods, modifier adaptation can also handle process disturbances and structural plant-model mismatch. This paper shows that the use of a convex model approximation in the modifier-adaptation framework implicitly enforces model adequacy. The approach is illustrated through both a simple numerical example and a simulated continuous stirred-tank reactor. To whom correspondence should be addressed
منابع مشابه
On the Use of Second-Order Modifiers for Real-Time Optimization
We consider the real-time optimization of static plants and propose a generalized version of the modifier-adaptation strategy that relies on second-order adaptation of the cost and constraint functions. We show that second-order adaptation allows checking whether a (local) plant optimum is reached upon convergence. A sufficient convergence condition that is applicable to firstand second-order m...
متن کاملModifier Adaptation for Run-to-Run Optimization of Transient Processes
Dynamic optimization can be used to determine optimal input profiles for dynamic processes. Due to plant-model mismatch and disturbances, the optimal inputs determined through model-based optimization will, in general, not be optimal for the plant. Modifier adaptation is a methodology that uses measurements to achieve optimality in the presence of uncertainty. Modifier-adaptation schemes have b...
متن کاملReal-Time Optimization via Directional Modifier Adaptation, with Application to Kite Control
The steady advance of computational methods makes model-based optimization an increasingly attractive method for process improvement. Unfortunately, the available models are often inaccurate. The traditional remedy is to update the model parameters, but this generally leads to a difficult parameter estimation problem that must be solved on-line, and the resulting model may still poorly predict ...
متن کاملModel Parameterization Tailored to Real-time Optimization
Challenges in real-time process optimization mainly arise from the inability to build and adapt accurate models for complex physico-chemical processes. This paper surveys different ways of using measurements to compensate for model uncertainty in the context of process optimization. A distinction is made between model-adaptation methods that use the measurements to update the parameters of the ...
متن کاملA Dual Modifier-Adaptation Approach for Real-Time Optimization
For good performance in practice, real-time optimization schemes need to be able to deal with the inevitable plant-model mismatch problem. Unlike the two-step schemes combining parameter estimation and optimization, the modifier-adaptation approach does not require the model parameters to be estimated on-line. Instead, it uses information regarding the constraints and selected gradients to impr...
متن کامل